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Steady, accelerated, and pulsating electrodynamic flows in a plane
dielectric channel are considered, along with Couette flow, It is shown
that for these types of electrohydrodynamic flows the effect is concen-
trated in a thin layer near the walls, which can considerably change
the friction stress on the walls. Some exact solutions of the energy
equation are obtained,

I. Flow of an incompressible fluid with a unipolar
charge between two parallel dielectric plates in a lon-
gitudinal electric field Egx is examined. In a single-
fluid approximation, the corresponding system of
equations of electrohydrodynamics (EHD) for small
Reynolds numbers Re = U/bEgx <« 1 has the form [1]
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The pressure P in this case can be represented as
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if we bear in mind that u and Ey are independent of x.
Assuming that the solid dielectric does not have
surface or volume conductivity, we write the boundary
conditions for the electric field as follows (the coordi-
nate origin is on the channel axis):
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We introduce the dimensionless quantities
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Taking (4) into account and integrating Eq. (3), we find
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where the constant of integration C is determined from
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1. Steady EHD flow in a plane channel. Consider
the case in which the hydrodynamic velocity and elec-
tric body force gEpx have opposite directions. This
case is interesting in that flows similar to detached
flows can arise in the channel when du/dylyz](1 =0. The
problem of similar flow when the directions of u and
Eox coincide was examined in [1].

If we write Eq. (1) for this cage in dimensionless
form,
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and integrate it under the usual boundary conditions,
we obtain
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from which it follows that du/dyly=g;; = 0 implies A =
= —Eug. When Eug >—A, the velocities near the walls
and at the center of the channel have opposite direc-
tions. The extreme points on the velocity profile in
this case are given by

A_.I;e + Eue 'V/’é tg Cl!_/e =0.

"Squeezing™" of the velocity profile near the walls is
due to the strong EHD effect produced by the concen-
tration of high space~charge densities in these regions.
The degree of nonuniformity of the space-charge den~
sity distribution can be estimated from (5), assuming,
for example, Peeg ~ 103, which corresponds to real
EHD flows:
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The flow rate of the fluid through the channel cross
section in the absence of the EHD effect is determined
in the well-known way:



Here

If the velocity profile is represented by expression
(7), then
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The second term in (8) determines the reduction in
flow rate (Bp are Bernoulli numbers).

For the electrohydrodynamic analog of Couette flow,
the space-charge distribution coincides with the space-
charge distribution in a channel with fixed walls, and
the equation of motion in the presence of an external
field #Egx has the form
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The boundary conditions are
R y=0;
0

u=1 at y=2

The coordinate origin is on the lower plate, which
moves with velocity —U;.
The solution of Eq. (9) has the form
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The point ¥ at which the flow velocity is zero is de-
termined from the following transcendental equation:
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For the friction stress T = du/dy (here 7 = Th/uU;) we
obtain the expression
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from which it follows that when the direction of force
gE¢x is positive the decrease in friction on the upper
wall and the increase on the lower wall are determined
by the second term in (11). If the absolute value of this
term is greater than (1 + U,;/U;)/2, there will be an
extreme point on the velocity profile near one of the
walls.

It should be noted that in [1], from a consideration
of the EHD analog of Poiseuille flow, it was concluded
that the EHD effect on the maximum velocity in the
channel was slight, which is a consequence of the
above-mentioned great nonuniformity of the space-
charge distribution.

The author extrapolates his estimates to the bound-
ary layer and expresses a doubt that the EHD effect
on boundary-layer separation is substantial.
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Such extrapolation is of gquestionable validity since
the pressure gradients in a boundary layer near the
separation point and in a plane channel have opposite
signs, and the space-charge distribution in a boundary
layer, which is to a considerable extent dependent on
the external electric field and the physical properties
of the surface, can differ considerably from the charge
distribution in an infinite channel [2]. In addition, the
determining factor is not the maximum value of the
ponderomotive component of the velocity on the chan-
nel axis but the variation of the velocity gradient at
the wall, which, in the final analysis, determines sep-
aration. The above examples indicate that this value
varies fairly substantially.

2, Accelerated channel flow. Such flow is produced
when the EHD effect is suddenly applied to a steady
flow. We assume that expressions (5) remain valid.
The corresponding equation of motion in the presence
of #Eyx has the form
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The boundary conditions (the coordinate origin is on
the lower surface of the channel) are
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The solution of Eq. (12) with account for (13) has the
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As might be expected, when t — «, the flow approaches
the steady state, which is described by the equation
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3. Steady, pulsating channel flow. Such fiow can
be caused by a variable electric field Egx = Ey cos wt.
We restrict ourselves to the case in which the space-
charge distribution over the channel cross section is
not a function of time, which is possible when
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Here, the solution of the electric-current continuity
equation (3) has the form of (5) and can be written as
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The initial equation of motion has the form
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The initial condition has no meaning in the given prob-
lem; the boundary conditioqs are conventional.

Having written Egx = E¢el®?, we seek the solution
in the form

=y e an
Substituting (17) into (18), we arrive at the equation
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with the boundary conditions
f=0 at y=+h

Solving (18) by the variation-of-constants method and
taking (17) into account, we obtain
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Only the real part has physical meaning in this expres-
sion. If we use the expansions of sh and ch into series,
calculate integrals (19), and isolate the real part, we
obtain the final solution of the problem, which, be-
cause of its cumbersomeness, is not given here,

1. Let us consider some exact solutions of the en-
ergy equation for EHD flow between parallel plates
when the physical constants of the fluid are indepen-
dent of temperature and the initial hydrodynamic and
thermal intervals are ignored. The corresponding
equation is written in dimensionless form as follows

[2]:
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1, Steady EHD flow between two parallel plates

heated to temperature Ty, The heat-flux equation in
this case has the form
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The boundary conditions are
T=1 at y=0;2 (22)
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If the lower plate is fixed and the upper plate moves
with velocity Uy, the temperature distribution over
the width of the channel is, on the basis of (21), (22)
and (10), described by the following expression:

T=1+0,1258y(2— g) (1 1-4E2C) &

2 [ 9EulS cos Cy (y —1)
- Pe, ( Pe, - Se) In cosC,
had 2, Ot~ -
<~ Eus§ (2 =DB,Pee™ C" 11 i qymn g (23)
= Eu, ; T 1+ @—1 9l

When Eug = S¢ =0, expression (23) coincides with the
corresponding solution for conventional hydrodynam-
ics.

If the charged fluid moves between fixed paraliel
dielectric plates, then, taking (22) and the correspond-
ing expression for the velocity profile into account,
the solution of Eq. (21) has the form
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Let us estimate the relationship between the Joule
heat and the heat due to friction. On the basis of (23)
and (24), assuming that Peg ~ 10° and tg (Pey VC/2) &
~2/(r —PeegVC), we can write, respectively,
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It is apparent from these expresswns that when Euge &
~AR1, S~107°, and S & , heating of the fluid
on the channel axis due to Joule heat is much less than
the heating due to friction. This does not hold true
near the walls, where the space charge is concen-
trated and Joule losses are great.

2, Lower channel wall at rest while upper moves
in positive direction with velocity @ = 1. Up to the
initial time, both walls are at temperature T = 0. At
time t = 0, the upper wall is instantaneously heated
to temperature T = 1. We must find the temperature
distribution at £ > 0.

The heat flux equation in this case has the form
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The boundary conditions are
T =0 TO H=0 T §-L.

Substituting the corresponding expressions for u and
q into (25), we obtain
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The expression for Ty has the form
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Substituting (28) and (29) into (26) and (27), we arrive
at the first boundary-value problem for the equation
of thermal conductivity:
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Solving (30) with allowance for (28), after transforma-
tions we obtain

T =0,5y 40,1255 y (2— 1) (1 +4Eu’C) +

—1)B

+ Eu Z e A Ll U e T
2 2EU2 cos Cl (!—/ ._1)
+ Pe. \ + Se) n cos C, +

S k1) - 2 yif
2V sm’L(—— _Fe ™
+ Z_:) 9 yexp ( Fo 7 ) X

(1+ 4EulQ)
T E@ )y T

{ (=1
n(k-+1)

924

+Eus Y ¢ @ =) By poan-i oy
n== l (2fl+1)'
‘__ 1 _ 2_ (_‘_l)u—!-l i
an(2n-+1) mwa

E

i=0 m=0

-1 2”) (2m) - (2m)! " f)im]} (31)

Here, ( Z ) are binomial coefficients.

On the basis of expression (31), it can be shown
that the third term in the braces has a value of ~EugS/
/Peze and whent < 1, y = 1, Eue ~#1, and Peg ~ 10°,
just as in the steady case, the Joule heat is much less
than the heat due to friction. Joule losses are greatest
near the channel walls.

CONCLUSIONS

Flow of incompregsible fluid with a unipolar charge
between two parallel dielectric plates in a longitudinal
electric field is considered. Problems of electrohy-
drodynamic Couette flow (10), steady, accelerated,
and pulsating flows in a plane channel (7), (14), and
(19), respectively, are solved. Exact solutions (23),
(24), and (31) are obtained for the energy equation for
incompressible Couette flow between moving and fixed
walls.

NOTATION

u(y) is the flow velocity, Pis the pressure, u and
p are the dynamic and kinematic viscosity coeffici-
cients, Eox and Ey are the strengths of external elec~
tric field and that produced by space charge, b is the
electric-charge mobility, D is the charge diffusion
coefficient, h is the channel half-width, U and U; are
the motion velocities of upper and lower plates, t is
the time, T is the temperature (°K), T = (T — T7)/
/Ty — Ty)s T7 and Ty are the temperatures of lower
and upper plates, S = qu/pCp (Ty — Tp) is Schlich-
ting's number, Se =TIh/n(Ty — T7) is the electric an-
alog of Schlichting's number, ais thethermal diffusivity,

w is the thermal conductivity, ep is the specific heat,

p is the fluid density.
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