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Steady, accelerated, and pulsating electrodynamic flows in a plane 
dielectric channel are considered, along with Couette flow. It is shown 
that for these types of electrohydrodynamic flows the effect is concen- 
trated in a thin layer near the walls, which can considerably change 
the friction stress on the wails. Some exact solutions of the energy 
equation are obtained. 

I. Flow of an incompressible fluid with a unipolar 
charge between two parallel dielectric plates in a lon- 

gitudinal electric field E0x is examined. In a single- 
fluid approximation, the corresponding system of 

equations of electrohydrodynamics (EHD) for small 

Reynolds numbers Re = U/bE0x << 1 has the form [I] 

OP f -u  _~_ s Eox dEu . (1) 
Ox -- ~t dg 2 -~g , 

OP dE u 
- -  = a E~ ; (2) 

bEy dEy _ D d2E--~ 'J =0.  (3) 
dg dg ~ 

The pressure P in this case can be r e p r e s e n t e d  as 

OP s P = - - X ~ -  E 2 
Ox T ~' 

if we bear in mind that u and Ey are independent of x. 
Assuming that the solid dielectric does not have 

surface or volume conductivity, we write the boundary 
conditions for the electric field as follows (the coordi- 

nate origin is on the channel axis): 

EyIu=o = 0 ;  Eu]u=~ = - J - - /  , ( 4 )  
bEox 

We i n t r o d u c e  the d i m e n s i o n l e s s  quan t i t i e s  

bE~Eo, . ~ =  g .  p % =  Ih  

~ qbhEoz . h 2 aP A; Eu~ Ih  

I ~ U  Ox b ~ U  

w h e r e  

h dE u 
I - -  ~ bEoxqdg=ebeoxEulu=~; q = e  ~-y; U=ulu=0.  

0 

Tak ing  (4) into accoun t  and i n t e g r a t i n g  Eq.  (3), we find 

PeeC (5) 
E u =  ~/CtgC,g;  q - -  2cos 2Cly ' 

w h e r e  the cons t an t  of i n t e g r a t i o n  C is  d e t e r m i n e d  f r o m  

1= I -CtgC,, CI = P % V C  (6) 
2 

1. S teady  EHD f low in a p l ane  channe l .  C o n s i d e r  
the c a s e  in which  the h y d r o d y n a m i c  v e l o c i t y  and e l e c -  
t r i c  body f o r c e  qE0x have  oppos i t e  d i r e c t i o n s .  Th is  
e a s e  i s  i n t e r e s t i n g  in that  f lows  s i m i l a r  to de t ached  
f lows  can  a r i s e  in the channe l  when du /dy ly=  h = 0. The  
p r o b l e m  of s i m i l a r  f low when the d i r e c t i o n s  of u and 
E0x c o i n c i d e  was  e x a m i n e d  in [1]. 

If we wr i t e  Eq.  (1) fo r  this c a s e  in d i m e n s i o n l e s s  
form, 

d2u -- A Eu eP% C 
d~ 2cos 2 Cly- 

and i n t e g r a t e  it  unde r  the usua l  boundary  condi t ions ,  
we obta in  

A 2Eu~ cos Cly (7) 
= - -  y ( 1 - - ~ ) +  ~ In cosC~- 

f r o m  which  it  fo l lows  that  du/dyly-=0;1 = 0 i m p l i e s  A = 
= - E u  e. When Eu e > - A ,  the v e l o c i t i e s  n e a r  the  wa l l s  
and at  the c e n t e r  of the  channel  have  oppos i t e  d i r e c -  
t ions .  The  e x t r e m e  poin ts  on the v e l o c i t y  p r o f i l e  in 
th is  c a s e  a r e  g iven  by 

Aye + Eu~ ~/C tg C~y~ =0.  

" S q u e e z i n g "  of t h e  v e l o c i t y  p r o f i l e  n e a r  the wa l l s  is 
due to the s t r o n g  EHD ef fec t  p r o d u c e d  by the  c o n c e n -  
t r a t i o n  of high s p a c e - c h a r g e  d e n s i t i e s  in t he se  r e g i o n s .  
The  d e g r e e  of nonunf fo rmi ty  of the s p a c e - c h a r g e  d e n -  
s i t y  d i s t r i b u t i o n  can be e s t i m a t e d  f r o m  (5), a s s u m i n g ,  
f o r  e x a m p l e ,  P e e  ~ 10 8, which  c o r r e s p o n d s  to r e a l  
EHD f lows  : 

q/Y=l 10 5. 

The  f low r a t e  of the f lu id  th rough the channe l  c r o s s  
s ec t i on  in the a b s e n c e  of the EHD e f fec t  is  d e t e r m i n e d  
in the w e l l - k n o w n  way:  
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Here  

1 

= ; u d g -  2 3 A. 
- - i  

h 

Ad------M ," M = ~ udg. 
hU J 

- - h  

If the velocity profi le  is represen ted  by express ion 
(7), then 

= 2 A - -  2Eu~ 
3 P% 

[ 2ln cos Cl - -  ~=~ (22~--I) B~ Pe~C~ 1 ~ (2~+- I~.T - J '  (8) 

The second t e rm in (8) determines  the reduction in 
flow ra te  (Bn are  Bernoulli  numbers).  

For  the e lec t rohydrodynamic  analog of Couetteflow, 
the space -charge  distr ibution coincides with the space-  
charge  distribution in a channel with fixed walls, and 
the equation of motion in the p resence  of an external 
field • has the fo rm 

d~ Eue Pe~C (9) 
d ~  - -  T 2 c o s  2 C1 (g  - -  1) 

The boundary conditions a re  

u - -  U~ at y = 0 ;  
U0 

u = l  at g = 2 .  

The coordinate origin is on the lower plate, which 
moves with ve loc i ty-U1.  

The solution of Eq. (9) has the form 

u =  ~ -  ~ (1+  ~-oU1) _ U1uoo - + 2EU~pe, In cosCl{g - - 1 ) c o s  Ci (10) 

The point ~ at which the flow velocity is zero is de- 
termined f rom the following t ranscendental  equation: 

go- ( 1 +  Ut)  U~ =: -T- 2Eu~ In cos Cl (go -- l)  
2 -  ~-0 -- ~ Pee cos Ci 

For  the fr ict ion s t r e s s  ~" = du/dy (here T-= ~'h/gU0) we 
obtain the express ion 

( ~_~ 1 1 - t -  + E u ~  C-tgC~(g--1), (11) 
2 Uo / - 

f rom which it follows that when the direct ion of fo rce  
qE0x is posit ive the decrease  in fr ict ion on the upper 
wall and the inc rease  on the lower wall a re  determined 
by the second te rm in (11). If the absolute value of this 
te rm is g rea te r  than (1 + U1/U0)/2, there  will be an 
ext reme point on the velocity profi le  near  one of the 
wa l l s .  

It should be noted that in [1], f rom a considerat ion 
of the EHD analog of Poiseui l le  flow, it was concluded 
that the EHD effect on the maximum velocity in the 
channel was slight, which is a consequence of the 
above-ment ioned great  nonuniformity of the space-  
charge  distribution. 

The author extrapolates  his es t imates  to the bound- 
a ry  layer  and expresses  a doubt that the EHD effect 
on boundary- layer  separat ion is substantial .  

~ucla extrapolation is of questionable validity since 
the pressure gradients in a boundary layer near the 
separation point and in a plane channel have opposite 
signs, and the space-charge distribution in a boundary 
layer, which is to a considerable extent dependent on 
the external electric field and the physical properties 
of the surface, can differ considerably from the charge 
distribution in an infinite channel [2]. In addition, the 
determining factor is not the maximum value of the 
ponderomotive component of the velocity on the chan- 
nel axis but the variation of the velocity gradient at 
the wall, which, in the final analysis, determines sep- 
aration. The above examples indicate that this value 
varies fairly substantially. 

2. Accelerated channel flow. Such flow is produced 
when the EHD effect is suddenly applied to a steady 
flow. We assume that expressions (5) remain valid. 
The corresponding equation of motion in the presence 
of :LE0x has the form 

0u ~ 0~ EuePeeC T @~ _ ~ + . (12) 
- -  = 2cos 2 Ca (Y---li 

The boundary conditions (the coordinate origin is on 
the lower surface  of the channel) a re  

~/7=0=0, ~ /v= ,=0 ;  [ r = t ' ] .  (13) 
k h' ] 

The solution of Eq. (12) with account for  (13) has the 
fo rm 

u = - - A - g ( 1 - - ~ +  2Eu. In eosCi(~--l). ~: 
- Pee cos C1 

+ 8Eue lncosC~ ~ -  1 exp [ - - ~  (2n+ 1)~t~]X 
- 2n ~- 1 Pee n=o 

x sin - -  (2n + l) g +  
2 

+ 4Eue ~ ~ ~ {(_l)a+iB2kPe:kC~sin(2n+l)~-g• 
- -  P ~ e  n O k  1~ 1 

X {k n ~+' 2 T M  (2,} - -  2i --1) (2n + 1) 2~'+' }-' } . (14) 

A s  might be expected, when  t - -  ~o, the flow approaches 
the steady state, which is descr ibed by the equation 

~1~=~ = - ~ ( 1 - ~ )  • 2F~no In r 
Pe e cos C1 

3. Steady, pulsating channel fiow. Such flow can 
be caused by a variable e lectr ic  field E0x = E0 cos wt. 
We r e s t r i c t  ourse lves  to the case  in which the space-  
charge  distribution over  the channel c ross  section is 
not a function of time, which is possible when 

h 
I (t) 

qdy = bEox(t) - Q'' (15) 
0 

Here,  the solution of the e l ec t r i c - cu r r en t  continuity 
equation (3) has the fo rm of (5) and can be writ ten as 
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follows : 

where  

Q~ PeeC q -  
2h cos" C~y 

Pe e = Ioh Io = max III. 
e D E o  ' 

The initial  equation of motion has the fo rm 

Ou O~u Q1 Pee Eo cos ~o t (16) 
0~ = v ~-y~ -~ 2 0 h cos.' Cly 

The initial condition has no meaning in the given p rob-  
lem; the boundary conditions a r e  conventional.  

Having wri t ten E0x = E0e iwt, we seek the solution 
in the fo rm 

icot u = f ( y )  e . (17) 

Substituting (17) into (16), we a r r i v e  at the equation 

f , , _  i~  f @  QtEoPe~C =0 (18) 
v 29 h cos.' Cly 

with the boundary conditions 

f = 0  at g =  + h .  

Solving (18) by the va r i a t ion-o f -cons tan t s  method and 
taking (17) into account,  we obtain 

If the lower plate is fixed and the upper  plate moves  
with veloci ty  U0, the t e m p e r a t u r e  distr ibution over  
the width of the channel is ,  on the bas i s  of (21), (22) 
and (10), descr ibed  by the following express ion :  

T = 1 +0,125S y-(2-- ~(1 I-4Eu2~C) + 

2 ( 2Eu2S ) cosC~(y--1) 
~: p~-\--~-~ § S e] In + cos C~ 

z Eu~S (2 ~-n --1)Bn pe2~-' C n [1 + (y-- l )  .'"+~ - -y] .  (23) 
n. (2n + 1)! 

When Eu e = S e = 0, express ion  (23) coincides with the 
cor responding  solution for  conventional hydrodynam-  
ics .  

If the charged fluid moves between fixed parallel 
dielectric plates, then, taking (22) and the correspond- 

ing expression for the velocity profile into account, 
the solution of Eq. (21) has the form 

S 
:if= I + T g(2 - -  ~ [A 2 (2+ ~) + 3EU2eCI + 

~ (2."--1) pe2e._,C.[l_l_(-~__l).~,,__~l + +2AEu~S n(2n +l )  

+ ~e~ pe e -}- Se in cos C1 

U ~  [( 
2~h j io3v cos2 C1 ~ d~-- 

ch g - -  ~ sh (h - -  ~) 
1 : / ~  C,_~ d~ (19) 

c h h  V V  

Only the real part has physical meaning in this expres- 

sion. If we use the expansions of sh and ch into series, 
calculate integrals (19), and isolate the real part, we 
obtain the final solution of the problem, which, be- 
cause of its cumbersomeness, is not given here. 

II. Let us consider some exact solutions of the en- 
ergy equation for EHD flow between parallel plates 
when the physical constants of the fluid are indepen- 
dent of temperature and the initial hydrodynamic and 
thermal intervals are ignored. The corresponding 
equation is written in dimensionless form as follows 
[2]: 

F-~ 0~ = + Pe 0~-- 0x.' + 0y ~ §  Seq. (20) \Oy  / 

1. Steady EHD flow between two pa ra l l e l  p la tes  
heated to t e m p e r a t u r e  T0o The heat-f lux equation in 
this case  has the f o r m  

= d@ @S \ ~ y /  - t -Seq=0.  (21) 
Oy ~ 

Let us estimate the relationship between the Joule 
heat and the heat due to friction. On the basis of (23) 
and (24), assuming that Pe e ~ 103 and tg(Pee~fC/2) 

2/0r - Pe e ~C), we can write, respectively, 

Tl~yt~l_t_0,125SI1_ ~_ 2aEu2r ] 
(2 t- Pee) .'' :v 

2 (2Eu2S ) n 

S [ 2n EU~ ] 
7"t~.-=~1+ "~- A 2 "  (2+.Pee).' j T 

2 ( 2Eu2S ) 
:Fpe~ \ Pee + S e  In 2 + P e .  

It is apparent from these expressions that when Eu e 
A~ 1, S ~ 10 -3 , ands e~ 10 -2 , heating of the fluid 

on the channel axis due to Joule heat is much less than 
the heating due to friction. This does not hold true 
near the walls, where the space charge is concen- 
trated and Joule losses are great. 

2. Lower channel wall at rest while upper moves 
in positive direction with velocity ~ = I. Up to the 
initial time, both walls are at temperature T = 0. At 
time t = 0, the upper wall is instantaneously heated 
to temperature T = i. We must find the temperature 
distr ibution at t-> O. 

The heat flux equation in this case  has the fo rm 

The boundary conditions a r e  

=1 at y = 0 ;  2. (22) 
Fo 0[- - Og '~ \ @/  + Se~" (25) 
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The boundary conditions are 

T(y, 0 ) = 0 ;  "F(0, 7 )=0 ;  T(2, 0 = I .  (26) 

Substituting the corresponding expressions for  u a n d  
q into (25), we obtain 

1 0-T 0~T 
--- + S [0,5+Eu el: C - tgCl~ - - l )  2] + 

Fo Ot- O f  

jr C S~P% , (27) 
2cos 2 C1 (y - -  1) 

whose solution is sought as 

T = To -}- T~, (28) 

where To, in turn, sat isf ies the equation 

C SePe e 
a@o = S [0,5-- Eur V-C-ig C~ (y--l)  2] + 2cos2 C~'(y--1) d? 

and boundary conditions (26). 
The express ion for To has the fo rm 

To =0,5y-+0,125S y(2- -  y) (l+4Eu~C) • (29) 

~-~ 22n-1)B~ ~ 2~-1~ 
+ _ Eu~S ve~ ~ [ l + ( y - - 1 ) ~ - - y ] +  

A2~=1 n.(2n+l)l 

2 2Eu2e S '~ cosC1 (~--- 1) 
+PeTe Pe~-~- 4-Se] In cos C~ 

Substituting (28) and (29) into (26) and (27), we a r r ive  
at the f i r s t  boundary-value problem for  the equation 
of thermal  conductivity:  

09-A = Fo 02~ (30) 

~,(0, 7)=o, 
~(2, 7)= I, 

T (y, 0) = --  T0. 

Solving (30) with allowance for (28), after transforma- 
tions we obtain 

=0,Sy q-0,125Sy(2-- y)(1 +4Eu2C) + 

~ (22~--1) B~ pe2n-lCn[l+ 1) 2n+l + EuoS ;~: ~ i~ (y- - ~-1 + 

2 ( 2Eu2s ) cosCl(~--l)  + 
+ ~  ~ Pe, + S e  In cost1 

+ 2 sin ~(k2+l) yexp ~ _ F o  2 _~__) • 

(--1) h (I+4Eu~C) 
~ ( ~ - ~ +  ~a(2k+l)a • 

+ Eu~S ~ (2~n --1) B, ~ 2n-I ~n 
- n . (2n+l ) !  vee c 

1 2 (_1),,+1 + 
~(2n +1) a n  

2n i 

[2n I i �9 (2m)! (~n) 2"+1 .(31) 
i = O  m = O  

Here '  ( a ) b  a re  binomial coefficients.  

On the basis of expression (31), it can be shown 
that the third term in the braces  has a value of ~ EueS/ 
/Pe2e and whenT<< 1, y-= 1, Eu e .~ 1, and Pee "~ 103, 
just as in the steady case,  the Joule heat is much less 
than the heat due to friction. Joule losses  are  greates t  
near the channel walls. 

CONCLUSIONS 

Flow of incompressible fluid with a unipolar charge 
between two parallel dielectric plates in a longitudinal 
electric field is considered. Problems of electrohy- 
drodynamic Couette flow (i0), steady, accelerated, 
and pulsating flows in a plane channel (7), (14), and 
(19), respectively, are solved. Exact solutions (23), 
(24), and (31) are obtained for the energy equation for 
incompressible Couette flow between moving and fixed 
walls. 

NOTATION 

u(y) is the flow velocity, P is the p ressure ,  ~ and 
v are  the dynamic and kinematic v iscos i ty  coeffici-  
eients, E0x and Ey are  the s trengths of external e lec-  
t r ic  field and that produced by space charge,  b is the 
e l ec t r i c - cha rge  mobility, D is the charge diffusion 
coefficient, h is the channel half-width, U0 and UI a re  
the motion velocit ies of upper and lower plates, t is 
the time, T is the tempera ture  (~ T = ( T -  T l ) /  
/ (T  u - T l) ,  T 1 and T u a re  the tempera tures  of lower 
and upper plates,  S = ~U~/pCp (T u - T l) is Schlich- 
t ing 's  number,  Se = Ih /~(Tu - T/)  is the electr ic  an- 
alog of Schlichting's number, a is the thermal  diffusivity, 
~4 is the thermal  conductivity, Cp is the specific heat, 
p is the fluid density. 
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